Pritchard, R. G., Banks, R. E., DuBoisson, R. A. & Tipping, A. E. (1991). Acta Cryst. C47, 230–232.

- Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175– 189. Oxford Univ. Press.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

The title molecule (I) is almost planar. The terminal phenyl and trimethoxylated phenyl rings make torsion angles O9—C9—C10—C11 of -3.1 (3) and O7—C7—C1—C2 of 12.1 (3)°. The β -diketone–enol fragment O9—C9—C8—C7—O7—H7 is almost planar (O9—C9—C8—C7 - 3.6, O7—C7—C8—C9 - 0.8°). These values are not very different from those given for the symmetrical 1,3-diphenyl-1,3-propanedione enol (Hollander, Templeton & Zalkin, 1973*d*).

Acta Cryst. (1995). C51, 103-104

1-Phenyl-3-(3,4,5-trimethoxyphenyl)-1,3-propanedione

J.-C. WALLET

Laboratoire de Phytochimie, ENSSPICAM, Faculté des Sciences et Techniques de Saint-Jérôme, 13397 Marseille CEDEX 20, France

E. MOLINS AND C. MIRAVITLLES

Institut de Ciència de Materials de Barcelona, Campus Universitat de Bellaterra, CSIC, 08193 Cerdanyola, Spain

(Received 18 February 1994; accepted 1 July 1994)

Abstract

The crystal structure of 1-phenyl-3-(3,4,5-trimethoxyphenyl)-1,3-propanedione, $C_{18}H_{18}O_5$, consists of discrete molecules separated by normal van der Waals interactions. The molecule exists in the enol form [*i.e.* 3hydroxy-1-phenyl-3-(3,4,5-trimethoxyphenyl)propene-1-one] in the solid state, stabilized by a short intramolecular hydrogen bond.

Comment

β-Diketones have been studied intensively, specifically on the basis of their intramolecular hydrogen bonding in the enol form (Gilli, Bellucci, Ferretti & Bertolasi, 1989; Bertolasi, Gilli, Ferretti & Gilli, 1991). They form complexes with transition metal cations (Usha & Vijayan, 1989) as well as with the alkali earth metal cations Mg²⁺ (Hollander, Templeton & Zalkin, 1973*a*), Ca²⁺ (Hollander, Templeton & Zalkin, 1973*b*) and Sr²⁺ (Hollander, Templeton & Zalkin, 1973*c*). Crystal structures of dibenzoylmethanes have been reported as stable (Williams, 1966; Hollander, Templeton & Zalkin, 1973*d*; Jones, 1976; Kaitner & Meštrović, 1993) and metastable (Etter, Jahn, Urbańczyk-Lipkowska, 1987) polymorphs.

© 1995 International Union of Crystallography Printed in Great Britain -- all rights reserved

The β -diketone–enol group forms a very short intramolecular O7—H7···O9 hydrogen bond [O7···O9 2.508 (2) Å] which is in the range (2.432–2.554 Å) found for a series of dibenzoylmethanes (Bertolasi, Gilli, Ferretti & Gilli, 1991). Other dimensions of this hydrogen bond are O7—H7 1.11 (2), H7···O9 1.45 (2) Å and O7—H7···O9 155 (2)°. The position of the H7 atom is also confirmed by the C—O bond distances C7—O7 [1.303 (3) Å] and C9—O9 [1.278 (3) Å] and the C— C bond distances C8—C7 [1.373 (3) Å] and C8—C9 [1.414 (3) Å]. A view of the title molecule is presented in Fig. 1 and shows the atom-labelling scheme.

Fig. 1. ORTEP (Johnson, 1965) drawing of the molecule with the atom-labelling scheme (the displacement ellipsoids are drawn at 50% probability).

The enol structures of dibenzoylmethanes are similar to those of the chalcones, which often crystallize in non-centrosymmetric space groups and so have large non-linear optical properties (Zhengdong & Genbo, 1993). However, the title compound crystallizes in a centrosymmetric space group which is unfavourable for such optical properties.

Experimental

Crystal data

$C_{18}H_{18}O_5$	Ν
$M_r = 314.34$	λ

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

$C_{18}H_{18}O_5$

Monoclinic	Cell parameters from 25	O5-C51	1.419 (3)	C9-C10	1.476 (3)
$P2_1/c$	reflections	07—C7	1.303 (3)	C10C11	1.376 (3)
a = 7.442 (1) Å	$\theta = 1-25^{\circ}$	09	1.278 (3)		1.394 (3)
a = 7.442 (1) A	$u = 0.09 \text{ mm}^{-1}$	CI = C2	1.390 (3)	C12 C12	1,300 (4)
b = 22.709 (2) A	$\mu = 0.09 \text{ mm}$	CI = C7	1.362(3)	C12C13	1 368 (4)
c = 9.738 (1) A	I = 294 K	CI_CI	1 372 (3)	C14-C15	1.389 (3)
$\beta = 101.22 (1)^{\circ}$	Prismatic	C2-C3	1.572 (5)		1.505 (5)
V = 1614.3 (3) Å ³	$0.45 \times 0.42 \times 0.26 \text{ mm}$	C3	117.9 (2)	C1C6C5	120.2 (2)
7 - A	Brown	C4O4C41	114.5 (2)	0/-0/-01	110.4 (2)
$D = 1.202 \text{ M}_{\odot} \text{m}^{-3}$		$C_{2} = 0_{2} = C_{2}$	117.7(2)	0/-0/-08	120.0 (2)
$D_x = 1.293$ Mg III		$C_2 - C_1 - C_0$	119.8 (2)	C1-C2-C8-C9	123.1 (2)
		C2-C1-C7	119.1(2) 1212(2)	09-09-08	119.8 (2)
Data collection		C_{1}	1199(2)	09-09-010	118.6 (2)
Enraf-Nonius CAD-4 dif-	1944 observed reflections	03 - C3 - C2	124.1 (2)	C8-C9-C10	121.5 (2)
fractometer	$[F > 3.0\sigma(F)]$	03C3C4	115.4 (2)	C9-C10-C11	120.2 (2
	$P_{1} = 0.034$	C2-C3-C4	120.5 (2)	C9-C10-C15	121.1 (2)
w-20 scalls	$\Lambda_{\rm int} = 0.034$	O4-C4-C3	119.5 (2)	C11-C10-C15	118.7 (2)
Absorption correction:	$\theta_{\rm max} = 20.3^{-1}$	04—C4—C5	120.7 (2)	C10-C11-C12	119.9 (2)
empirical (ψ scans of	$h = -9 \rightarrow 9$	C3C4C5	119.7 (2)	C11—C12—C13	120.9 (2)
seven reflections)	$k = 0 \rightarrow 28$	O5-C5-C4	115.8 (2)	C12-C13-C14	120.1 (2)
$T_{\rm min} = 0.949, T_{\rm max} =$	$l = 0 \rightarrow 12$	O5-C5-C6	124.4 (2)	C13-C14-C15	119.3 (2)
0.000	3 standard reflections	C4—C5—C6	119.8 (2)	C10C15C14	121.1 (2
	fragman 60 min				
4154 measured reflections	irequency: 60 min	The structure wa	The structure was solved by direct methods with a straightf		
3374 independent reflections	intensity variation: 0.4%	ward run of the MIIITAN11/82 program (Main Fiske Hi			

Refinement

 $(\Delta/\sigma)_{\rm max} = 0.74$ Refinement on F $\Delta \rho_{\rm max} = 0.11 \ {\rm e} \ {\rm \AA}^{-3}$ R = 0.043 $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$ wR = 0.059Atomic scattering factors S = 2.071944 reflections from International Tables 281 parameters for X-ray Crystallography Only H-atom U's refined (1974, Vol. IV) $w = 4F_o^2/\sigma^2(F_o^2)$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

 $B_{\rm eq} = (4/3) \sum_i \sum_i \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	B_{eq}
03	0.1334 (2)	0.06785 (9)	0.4241 (2)	7.25 (4)
04	0.2521 (2)	0.00649 (7)	0.2282 (2)	6.03 (4)
05	0.5818 (2)	0.02740 (6)	0.1632 (2)	5.77 (4)
07	0.6052 (2)	0.22436 (7)	0.5785(1)	6.25 (4)
09	0.8426 (2)	0.30273 (7)	0.5773 (1)	5.95 (4)
C1	0.5638 (3)	0.1464 (1)	0.4154 (2)	4.36 (5)
C2	0.3975 (3)	0.1324(1)	0.4534 (2)	4.90 (5)
C3	0.2989 (3)	0.0847 (1)	0.3944 (2)	5.03 (5)
C4	0.3610 (3)	0.0509 (1)	0.2952 (2)	4.74 (5)
C5	0.5291 (3)	0.0639(1)	0.2594 (2)	4.76 (5)
C6	0.6298 (3)	0.11144 (9)	0.3202 (2)	4.76 (5)
C7	0.6627 (3)	0.1995 (1)	0.4744 (2)	4.59 (5)
C8	0.8080 (3)	0.2227 (1)	0.4246 (2)	4.91 (5)
C9	0.9001 (3)	0.27430 (9)	0.4810 (2)	4.67 (5
C10	1.0654 (3)	0.2957 (1)	0.4341 (2)	4.53 (5)
C11	1.1497 (3)	0.3468(1)	0.4887 (2)	6.07 (6
C12	1.3084 (4)	0.3657(1)	0.4473 (3)	7.25 (7)
C13	1.3836 (3)	0.3340(1)	0.3527 (3)	6.67 (6
C14	1.3006 (3)	0.2835(1)	0.2958 (2)	6.08 (6)
C15	1.1415 (3)	0.2644 (1)	0.3364 (2)	5.23 (5
C31	0.0954 (3)	0.0837(1)	0.5535 (3)	8.00 (7)
C41	0.3065 (4)	-0.0503 (1)	0.2746 (3)	7.67 (7
C51	0.7515 (3)	0.0393(1)	0.1229 (3)	6.60 (6

Table 2. Selected geometric parameters (Å, °)

O3—C3	1.373 (3)	C3C4	1.382 (3)
03—C31	1.391 (3)	C4—C5	1.394 (3)
O4C4	1.375 (3)	C5C6	1.381 (3)
O4C41	1.400 (3)	C7—C8	1.373 (3)
O5C5	1.364 (3)	C8—C9	1.414 (3)

orward run of the MULTAN11/82 program (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982). Full-matrix refinement on F was carried out using the MolEN program (Fair, 1990), which was also used for the absorption correction. All H atoms were located in a difference Fourier map and refined isotropically (without constraints).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, bond distances and angles involving H atoms and torsion angles have been deposited with the IUCr (Reference: PA1113). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917-4925.
- Etter, M. C., Jahn, D. A. & Urbańczyk-Lipkowska, Z. (1987). Acta Cryst. C43, 260-263.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023-1028.
- Hollander, F. J., Templeton, D. H. & Zalkin, A. (1973a). Acta Cryst. B29, 1289-1295.
- Hollander, F. J., Templeton, D. H. & Zalkin, A. (1973b). Acta Cryst. B29, 1295-1303.
- Hollander, F. J., Templeton, D. H. & Zalkin, A. (1973c). Acta Cryst. **В29**, 1303–1308.
- Hollander, F. J., Templeton, D. H. & Zalkin, A. (1973d). Acta Cryst. B29, 1552-1553.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Jones, R. D. G. (1976). Acta Cryst. B32, 1807-1811.
- Kaitner, B. & Meštrović, E. (1993). Acta Cryst. C49, 1523-1525.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Usha, K. & Vijayan, K. (1989). Mol. Cryst. Liq. Cryst. 174, 39-48.
- Williams, D. E. (1966). Acta Cryst. 21, 340-349.
- Zhengdong, L. & Genbo, S. (1993). Acta Cryst. C49, 1075-1077.